JVC Television
Power Supply Training
INTRODUCTION

After this course, you will learn:

• The operation of Switching supplies
• Details about the regulator IC
• Operation of the Power Supply Modes
• The operation of the Power Factor Circuit
• Troubleshooting procedures useful in diagnosing defective components
• Some failures and their symptoms
AGENDA

• Model Identification
• Service Manual Supplements
• Switching Power Supply
• Power Supply Components
• Basic Switching
• Switching Device
• Switching Operation
• Switching Review
• Power Factor circuit
• Troubleshooting techniques
2.3 HOW TO IDENTIFY MODELS

How to recognize from the appearance of the model concerned is written below. Please distinguish from several contents currently printed on the rating label.

MODEL NAME
- AV-27MF36
- AV-32MF36

DISTINGUISH NAME
- RA
- SA
- YA
- ZA

JVC MODEL NO. AV-32MF36
AC 120V 60Hz
TV SCREEN SIZE: DIAGONAL
160 W
32 INCHES
CHASSIS NO. A136
MANUFACTURED JUNE. 2005
SERIAL NO. 11033032
C UL US LISTED
• Prior to service, it is always wise to verify the Model and Version to ensure that the correct Service manuals and Schematics are being used.

• In some cases, the Version may indicate PWB or CRT differences

• This information is listed in the Main Difference List of the Service Manual, or the Service Manual Supplements. For example YA319 is the service manual, but YA319B would be a revision.

• The Example shows that the AV-32MF36 has (4) versions. The example shows the “Z” Version of this model.

• The Model Number listed at the top of the model label will always be the same for all versions.

• The TV Model Version is usually shown to the right of the Serial Number on the Model Label
Picture tube of AV-48P776/H was changed. Therefore, this service manual describes only the items which differ from those of the AV-48P776/H service manual. For details other than those described in this manual, please refer to the AV-48P776/H service manual (No.YA318, 2005/11).
• Some Service Manual have Supplements

• Supplements show Corrections, Additions and Differences that may have occurred during the production of a TV Model.

• It is necessary to ensure you have all Service Documents for a model prior to servicing.

• The Original Manual will only show the original Service Information for a model, but Service Manual Supplements may list information that is important to the service of a model.

• Ensure that you use the Model and Model Version when looking for documents on ISee to ensure you are getting the correct information.
When troubleshooting it is necessary to use the respective ground of the device you are measuring.
• This is the Power Section from the AV-32F703 taken from the 52004 Schematic of the Main PWB.

• On the schematic, there a BLACK line that separates the LIVE and ISOLATED sides of the PWB. Components on the left side are live. Those on the right side are isolated.

• When troubleshooting it is NECESSARY to use the respective ground, Live or Isolated, of the device you are measuring.

• Additional components, located along the dotted line, ensure circuit isolation while passing all Power or Control signals. These components are the Relay, Switching Transformer, Photocoupler and the Capacitors that are used to connect the Live and Isolated grounds.
1. F901 and VA901 Surge Protection
2. T951, D954-57 and C951 Standby Power
3. C901, C902 and C903 Line Filter:
4. D901 and C907 Main rectifier
5. IC911 Switching Regulator
6. D911, R911, R930 and C914 Startup
7. T921 Switching Transformer
8. R912, R913 and R914 Current Feedback
9. R915 and D912 Run DC
10. D917 and D914 Refresh
11. D945 ~ RY951 Main Relay
12. Q951 Main Relay Drive
13. IC921 Error Amp
- Reference Schematic 52004 Main PWB for Schematic Details.

- This is a brief explanation of the components that make up the Power Supply and their functions.

- This is the basic circuit configuration and use for all JVC Power Supplies. **While some Power Supplies may omit or add circuits, the general function of all JVC Power Supplies are the same.**

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. F901 and VA901</td>
<td>Surge Protection: Stops circuit function if High Current (short) is detected.</td>
</tr>
<tr>
<td>2. T951, D954-57 and C951</td>
<td>Standby Power: Supplies Standby DC voltage to Micon</td>
</tr>
<tr>
<td>3. C901, C902 and C903</td>
<td>Line Filter: Filtering of AC line noise</td>
</tr>
<tr>
<td>4. D901 and C907</td>
<td>Main rectifier: Provides rectified DC to Switching Regulator and Switching Transformer.</td>
</tr>
<tr>
<td>5. IC911</td>
<td>Switching Regulator: Regulates Switching Voltages out of Transformer</td>
</tr>
<tr>
<td>6. D911, R911,R930 and C914</td>
<td>Startup: Provides Startup DC for Switching Regulator until Transformer conduction begins</td>
</tr>
<tr>
<td>7. T921</td>
<td>Switching Transformer: Provides voltages to all circuits</td>
</tr>
<tr>
<td>8. R912, R913 and R914</td>
<td>Current Feedback: Provides current feedback to Switching IC to stop conduction.</td>
</tr>
<tr>
<td>9. R915 and D912</td>
<td>Run DC: Provides additional DC to Switching IC</td>
</tr>
<tr>
<td>10. D917 and D914</td>
<td>Refresh: Provide Refresh voltage to Restart IC Regulation</td>
</tr>
<tr>
<td>11. D945 ~ RY951</td>
<td>Main Relay: Allows Power flow to Switching IC and SW Reg. Also functions as relay for Degauss</td>
</tr>
<tr>
<td>12. Q951</td>
<td>Main Relay Drive: Controls function of Main Relay</td>
</tr>
<tr>
<td>13. IC921</td>
<td>Error Amp: Monitors B1 Line Voltage</td>
</tr>
</tbody>
</table>
1. Switch SW1 off
2. Apply a DC to the inductor as shown
3. Turn SW1 on and the Current rises slowly
4. The Inductor charges to its maximum
5. After charging is complete, the current stays constant
• One of the important parts in SMPS is the Transformer. Transformer functions like a basic inductor.

• With a DC applied to an inductor and connected to ground through a resistor, if the switch is turned on, the current will rise slowly through the inductor and the resistor.

• The current ramps up and reaches maximum and stays constant.

• When the current does not change any more, the inductor is fully charged.

• Capacitors and inductors behave similarly but opposite. Capacitors can hold the charge, but inductors cannot. It has to be discharged. If there is no path to discharge, it will make eddy current through the coil and produce heat.

• The basic of Switching power supply is the effective and controlled use of using the discharged energy.
Once the Inductor is finished charging, turn SW1 off.

1. What happens to the charge in the inductor? It will be lost as heat.

2. Can we use this energy? If so, how?

3. Can we control this charging? If so, how?

This can be applied in the Switching Power supply.
• When the current flow to the Fully Charged Inductor is interrupted by closing SW1, the stored energy is released as Heat.

• This stored energy is utilized in the Switching Power Supply.
If there is a secondary winding during the off time, energy will be transferred into the secondary.

In other words:
Transformer charges during ON-time.
Discharges during OFF-time
If the coil has a secondary winding and a load is attached, it is called a transformer because it transforms the energy into electrical energy and delivers it to a load.

In other words, the transformer discharges its stored energy into the secondary.

Repeating these actions again.

1. When the Switch is turned on the primary charges.

2. When the Switch is turned off, the charged core of the inductor discharges into the secondary.

3. Since we are interested in DC output, the addition of the Diode and Capacitor at the secondary will allow for the energy to be stored in the Capacitor. This stored energy is our Secondary DC voltage.

4. If the switch is turned off prior to fully charging the inductor, the transferred energy will be less. This shows that by controlling the Switch’s on/off time we can obtain necessary secondary voltage.

The Transformer, Switch or any Switching Device and a Control Circuit (to control on/off switching) make up a Switching Supply.
1. Apply an unregulated DC Voltage to the Transformer’s Primary.

2. Switching the Primary ON and OFF will result in Secondary Voltage.

3. Controlling the ON/OFF timing of the Switching Device will result in a Regulated Secondary Voltage

Switching power supply regulation is achieved by controlling the switching device’s ON/OFF timing.
SWITCHING DEVICE

- STR-Fxxxx IC
- Very reliable construction
- All in one package
- Protection circuits
- Minimum pins (5 pins)
• This is one of the various types of Switching Devices used in JVC Power Supplies.

• In the previous explanations we called it SW1. On the Schematics previously outlined it is the Regulator.

• It has the actual ON/OFF switch (a Power FET), control circuits, and protection circuits.

The Internal Circuits of the other Switching Devices used by JVC may vary, but the operation of the Device is basically the same for them all.
SWITCHING DEVICE

Properties

- 0.7V Applied to Pin 1 will turn OFF the FET
- FET will turn on after pre-determined time
- Applying a 2.0V pulse to Pin 1 refreshes the IC prior to pre-determined time
• When a Start up DC is applied to the other circuits inside the IC, it turns the FET ON.

• When the FET is ON there will be a short between pin2 and pin3 of the IC.

• If 0.7V is applied at pin 1, the FET turns OFF. Due to the internal timing circuit, the FET will start again after a pre-determined time.

• If we wants to turn ON the IC prior to the internally decided time, we can apply a 2VDC to pin1.

• This means, we can turn ON the FET and turn OFF the FET at any time we want.
Startup: When we apply approximately 12V to pin 4, the IC’s internal circuit functions and turns ON the FET.

Drive: When the internal circuit is turned on, the driver circuit turns ON the power FET.

Power FET: This is what we previously called the Switch. We use this to allow current to flow through the transformer.

Oscillator: The IC has an Oscillator for timing control. This oscillator decides its natural on/off time. This means, after applying the startup DC, after a pre-determined time it will come on.

OCP/FB: This is the control input to override the oscillator’s timing. By applying a 0.7V to this input, we can turn OFF the internal circuit and FET. By applying a 2.0V pulse, we can turn it back ON.

TSD: Thermal Shut Down: This is for the thermal protection. When the IC overheats, this circuit turns off the IC and latches it. We have to unplug the power to restart.

OVP: The OVP circuit monitors the startup DC. If the voltage exceeds the specified level, it turns off the IC and latches it. We need to unplug the power to restart.

Latch: This is the latch circuit that latches and holds the shut down circuit outputs.
• Apply power to the IC

• When the tank Capacitor charges up to the Start-up voltage, IC starts conduction

• The Switching FET turns ON

• Now it can switch the RAW-DC through the Transistor, if it is connected

Reference Schematic 52004 Main PWB for Schematic Details.
• This is start up circuit. This circuit composes R911, R930, D911 and C914.

• This circuit Provides the Start-up Voltage for the Switching IC911

• The DC voltage supplied by this circuit turns the IC and FET ON.

• If the IC was open and AC current was allowed to flow, no current would flow through the IC. This would cause C914 to overcharge and explode. For this reason, If you find a defective Switching Regulator IC, replace the Capacitor. Similarly, if you find exploded Capacitor, replace the IC.

Reference Schematic 52004 Main PWB for Schematic Details.
• Current flows through the transformer and charges it
• A proportional voltage develops at the source resistor
• Turning the FET off will cause the switching action

Reference Schematic 52004 Main PWB for Schematic Details.
• Once the startup DC is applied, the FET can turn ON

• The Transformer is allowed to charge.

• Raw DC is passed through the primary of a transformer to the IC pin 3

• The Voltage passed through the FET connects to a source resistor on pin 2 to ground.

• As the Transformer charges, a proportional voltage will build on the Source Resistor R914.
Do you remember this?

- Applying 0.7V to Pin 1 will turn OFF the FET
- FET will turn on after pre-determined time
If 0.7V is applied at pin 1, the FET turns OFF.

Due to the internal timing circuit, the FET will start again after a pre-determined time.
• When the FET conducts, a ramp voltage is generated at pin 2.
• We use this ramp to turn FET off and hence create a switching action.

Reference Schematic 52004 Main PWB for Schematic Details.
• We already discussed that the IC is designed such that if we apply 0.7V at pin1, it will turn off the IC temporarily.

• The circuit is designed in such a way that when the transformer is charged, 0.7V builds at the Capacitor C913.

• We use this ramping voltage at pin2 to turn off the IC.

• When the inductor (primary) charges, Current increase through the source resistors. It causes a ramp voltage at pin2 and is applied to pin.

If this feedback Resistor/Capacitor opens up, the IC will never be turned off. The transformer and the IC will overheat and shutdown occurs.
• Repeating ON/OFF switching generates Secondary Voltages

• IC function drains the ICs Power Supply and it becomes too low

The IC could Shut OFF due to insufficient Supply Voltage

Reference Schematic 52004 Main PWB for Schematic Details.
• When DC is applied to pin3, current will flow through the transformer and charges it. The current will generate .7 V on pin2. This is applied to pin1 to turn it off.

• When the Inductor shuts off, the Inductor discharges the energy to the secondary.

• Repeating the ON and OFF process causes a switching action. This action causes the transformer to charge and discharge generating Secondary Voltages.

• The IC’s startup voltage is through a high value resistor.

• When the IC functions, it drains current through pin4 and the supply is insufficient and cannot continue to supply voltage to the IC.

The IC could Shut OFF due to insufficient Supply Voltage

• We want the IC to be permanently on and turn ON/OFF the FET. But if the IC goes off, the control is not possible. Total reset occurs causing a pulsating supply
Supplement the start-up DC with Run-DC

IC Power Supply becomes stable

Transformer fully Charges/Discharges

Reference Schematic 52004 Main PWB for Schematic Details.
From the generated secondary voltage, an additional DC is supplemented using a Resistor and Diode.

This is known as Run-DC circuit

Now that the supply is steady and running, we have secondary voltages. The Transformer charges fully and discharges into secondary
TYPE 1 - ALWAYS ON
• Standby Voltage for Micon is supplied by Switching Circuits.
• Standby Mode used when TV Off.

TYPE 2 - POWER ON
• Switching Circuits ONLY supply Power after TV Power is ON.
• Standby Voltage for Micon is supplied from DC Voltage tapped directly from incoming AC line.

There are 2 general types of circuit configurations used in JVC Power Supplies.
There are 2 general types of circuit configurations used in JVC Power Supplies.

TYPE 1 - ALWAYS ON

- Utilizes a Standby Mode when TV Power is OFF.
- Standby Voltage for Micon is supplied by Switching Circuits.
- Example shown that T2921 supplies voltage to the DC Regulator (IC2922).
- The Micon will turn ON RY2952 to allow B1 Voltage flow when the TV is turned ON.
- Reference Schematic YA321 Power and Def PWB for Schematic Details.

TYPE 2 - POWER ON

- Switching circuits supply Power after TV Power is ON.
- Standby Voltage for Micon is supplied from DC Voltage tapped directly from incoming AC line.
- In the example shown, the Standby VCC is supplied by T951, D954-D957 and C951.
- The Micon turns ON RY951, this allows AC Voltage to flow to the Switching Circuits when the TV is turned ON.
- Reference Schematic 52004 Main PWB for Schematic Details.
In Standby Mode, very few devices are functional.

- They need only very little charge.
- We must reduce energy transfer.

In Standby Mode, very few devices are functional.

- They need only very little charge.
- We must reduce energy transfer.

In Standby Mode, very few devices are functional.

- They need only very little charge.
- We must reduce energy transfer.
• Some units utilize a Standby Mode.

• In Standby Mode, very few devices such as CPU, memory, etc. are functional.

• Since CPU power is also provided from the transformer’s output, we can not turn off the regulator.

• In order to minimize the Power consumption, we control the energy transfer by reducing the charging and discharging time.

• Refer to the schematic and follow the standby supply for the CPU. It is generated from the STB13V.
In normal mode, the on-time is the transformer’s charging time.

In standby mode, additional DC added to the ramp.

This reduces ramping time.
• In normal operating mode, the ramp size depends on how long it takes the current to generate the 0.7V Ramp.

• By this time, the transformer would normally be fully charged.

• In standby, we don’t need the transformer to charge fully, this means reducing the ICs on-time.

• This is done by raising the Ramp’s base or adding DC to it.

• The new ON-Time will be the time it takes to ramp up to 0.7V from the additional DC.
• Additional DC is applied from IC’s supply using a Photo Coupler.

• The Photo Coupler must be turned On in Standby Mode and turned Off in Normal Mode.
In the Standby Mode, additional DC is provided from the ICs Supply Voltage using the Photo Coupler.

The CPU’s outputs a High turning the Photo Coupler on.

The Photo Coupler supplies additional FeedBack DC to pin1.

As we already saw in the chart, this must be added in standby and must be removed in normal mode.
During Standby Mode, the Run DC may be insufficient to keep Switching IC ON.

IC Power is supplemented by Regulated Voltage.
• When power is turned on, the Run-DC is sufficient to keep the IC functioning.

• During Standby Mode the Output Voltages from the Transformer is reduced.

• When this happens, the IC could turn off due to the insufficient Run-DC Voltage that is being supplied.

• For this reason, a regulated DC voltage from a higher tap is used to supplement the RUN DC.

• This voltage must be regulated otherwise in normal operation the voltage will be too high and will destroy the IC

This circuit is not used in all models
TELEVISION

SWITCHING OPERATION

PHOTO COUPLER DURING POWER ON

- At Power On Micon outputs LOW
- Photo coupler is inactive
- On-Time is normal
- B1 relay is turned On
• At Power-on, Micon’s power control output goes low.

• This signal (through some inverters) turns on the relay and supplies power to Main Power output.

• At the same time, the Micon turns off the Photo Coupler.

The control circuits for the Photo Coupler and their operation may vary slightly in some models.
• Error amp monitors B1
• Controls Photo Coupler to Reduce on-time if B1 exceeds spec
• When the on-time is normal sufficient energy is transferred and the B1 supply; High voltage, etc. is active.

• If the B1 Supply is more than required, it must be reduced.

• By controlling the ON/OFF timing of the supply, the B1 Supply voltage can be controlled.

• This is done with the use of an Error Amp.

• The Error Amp monitors the B1 Supply and Activates the Photo Coupler feedback as needed to reduce the ON time of the Switching Supply.
In practical use, we need to restart the IC earlier than the pre-determined time.

- Apply 2.0V pulse to pin 1.
- During the negative edge, the IC will refresh (reset) and turns on again.
• When the transistor is off, the ramp voltage will disappear because of the internal oscillator.

• After a pre-determined time, the FET will turn on again.

• In case of additional power requirements by the TV circuits, instead of waiting for the internal Timing generator to turn on the IC, we can refresh the IC.

• By raising pin1 above 2.0V and dropping it back to zero, on the negative edge, the IC resets again and starts conduction.

• This is known as the Refresh Circuit
1. F901 and VA901 Surge Protection
2. T951, D954-57 and C951 Standby Power
3. C901, C902 and C903 Line Filter:
4. D901 and C907 Main rectifier
5. IC911 Switching Regulator
6. D911, R911, R930 and C914 Startup
7. T921 Switching Transformer
8. R912, R913 and R914 Current Feedback
9. R915 and D912 Run DC
10. D917 and D914 Refresh
11. D945 ~ RY951 Main Relay
12. Q951 Main Relay Drive
13. IC921 Error Amp

Schematic 52004 Main PWB
Reference Schematic 52004 Main PWB for Schematic Details.

For Review, look over the Schematic and identify these components and their functions.

1. F901 and VA901 **Surge Protection:** Stops circuit function if High Current (short) is detected.
2. T951, D954-57 and C951 **Standby Power:** Supplies Standby DC voltage to Micon
3. C901, C902 and C903 **Line Filter:** Filtering of AC line noise
4. D901 and C907 **Main rectifier:** Provides rectified DC to Switching Regulator and Switching Transformer.
5. IC911 **Switching Regulator:** Regulates Switching Voltages out of Transformer
6. D911, R911,R930 and C914 **Startup:** Provides Startup DC for Switching Regulator until Transformer conduction begins
7. T921 **Switching Transformer:** Provides voltages to all circuits
8. R912, R913 and R914 **Current Feedback:** Provides current feedback to Switching IC to stop conduction.
9. R915 and D912 **Run DC:** Provides additional DC to Switching IC
10. D917 and D914 **Refresh:** Provide Refresh voltage to Restart IC Regulation
11. D945 ~ RY951 **Main Relay:** Allows Power flow to SW IC and SW Reg. Also functions as relay for Degauss
12. Q951 **Main Relay Drive:** Controls function of Main Relay
13. IC921 **Error Amp:** Monitors B1 Line Voltage

This is the basic circuit configuration and use for all JVC Power Supplies. While some Power Supplies may omit or add circuits, the general function of all JVC Power Supplies are the same.
We will quickly go through the operation of a Switching Supply.
The AC line Voltage is converted to DC by the Bridge and Capacitor.
• The circuit begins with the AC Input, Line Filters (not shown), Bridge Rectifier and the Filter Capacitor.

• The Bridge Rectifier converts the AC input into a DC output.

• The DC output is stored by the Capacitor.
Raw DC flows through the transformer to the Switching Device.

When the FET is turned On, it will allow current flow to ground.
• DC voltage flows through the Transformer to the FET.

• When the Switching Device is turned ON, the FET will close.

• When the FET closes it will allow the DC voltage to be grounded through the Resistor.
• Start-up Voltage applied to IC turns On FET, allowing current through Inductor.

• Current Flow allows the Inductor to charge and a Ramp Voltage to Build at IC.
The Start-up DC is applied to the ICs Pin4 from the Bridge Rectifier through the Resistor and Diode.

Powering up the IC turns On the FET allowing the DC voltage from the Transformer to pass through the FET.

The current flowing through the Transformer allows the inductor to charge.

At the same time the Inductor is charging, a Ramp Voltage builds up at the Feedback of the Switching IC.
• The ramp voltage is applied to pin 1.

• When the ramp voltage reaches 0.7V the FET will shut off.
• When the Inductor is charged, it is necessary to turn Off the FET to allow the Inductor’s stored energy to be released.

• The Feedback of the Ramping Voltage through the Resistor connecting pins 2 and 1 will turn OFF the FET when the ramping voltage reaches 0.7V.

• removing the 0.7 V will allow the IC to resume conduction in a pre-determined time.
• Transformer discharges into the Secondary when FET shuts off.

• DC Voltage supplying the Switching IC becomes insufficient.

• Run-DC provided to IC from the Transformers Secondary.

• Run-DC maintains the ICs stable operation
• As the Transformer discharges, the Secondary Windings develop secondary voltages.

• The DC Voltage supplying the Switching IC becomes insufficient.

• As the Capacitor discharges the Switching IC requires additional voltage to maintain stable operation.

• Additional Run-DC is provided to the Switching IC from the Transformers Secondary.

• This Voltage maintains the ICs continuous operation and the Circuit becomes stable.
- Micon powered by Standby Voltage from Transformer secondary
- Micon turns on the Photo Coupler
- Photo Coupler adds DC shortening IC On time
- TV is now in Standby Mode
- Regulated DC added to RunDC
• TV Micon is powered by the Transformers Secondary Voltages.

• The Micon Turns on the Photo Coupler.

• The Photo Coupler adds additional DC to the Switching IC’s feedback reducing its On Time.

• The TV is now in Standby Mode.

• Since the on-time is reduced, all voltages from Transformer are reduced including the Run DC that helps power the Switching IC.

• Regulated DC is added from a higher Transformer winding to ensure the IC does not shut when the TV is in Standby Mode.
• Power ON command received by Micon
• Micon turns off Photo Coupler and turns on Main Power Relay and circuits
• Error Amp monitors B1 and controls Switching IC off time.
• Refresh Circuit added in case TV circuits require additional power.
• Refresh circuit allows Switching IC to be turned On whenever needed by applying 2V pulse to IC.
When power is turned on the CPU turns off the Photo Coupler and turns on the relay for the main Power Circuits (B1 Voltage).

Turning off the Photo Coupler means there is no control over the output.

The Error Amp is activated and Monitors the B1 supply.

The Error Amp uses the Photo Coupler to control the Switching IC’s Off times.

In case of additional power requirements by the TV circuits, instead of waiting for the internal Timing generator to turn ON the Switching IC, we can refresh the IC.

The Refresh circuit is added and works by raising pin1 above 2.0V and dropping it back to zero.

On the negative edge, the IC will reset again and start conduction.
TELEVISION

POWER FACTOR CIRCUIT

- Used in Some HDILA models.
- Power demand of TV circuits cause AC line current spikes.
- AC spikes affect rectified DC.

AC Line Without Power Factor Circuit
• Some HDILA TV Power Supplies utilized a Power Factor Circuit (PFC).

• The High current demand of the Ballast PWB and Circuit exceeded the ability of the Standard Bridge Rectifier/Capacitor combination to deliver the power.

• As the AC would rise, the Capacitors ability to supply power diminished causing the Ballast Circuit to Pull Power from the AC supply.

• The charge/discharge of these circuits happens quickly causing AC line Current spikes during these Peak Power Demand periods.

• As shown in the figure, this causes AC voltage dips and affects the Rectified B1 Voltage.
PFC controls FET ON/OFF Operation

- Eliminates AC Line Spikes
- Smooth Power Output
• The PFC IC controls the Power FET.
• The FET increases Power output during spikes.
• The PFC IC monitors the incoming DC to the Transformer and Outgoing DC from the Transformer.
• As the Transformer Charges, the PFC IC turns the FET ON.
• When the Transformer is fully Charged and begins to discharge into it’s secondary, the PFC IC turns the FET OFF.
Pin Explanation

1. Monitors B1 Line and provide Voltage Feedback to IC

2. Compensation to allow IC to compensate for Temperature changes during operation

3. Samples Bridge Rectifier Output. Turns FET OFF when Bridge Rectifier goes to 0.0VDC.

5. Switches FET ON when Transformers Secondary Current Reaches 0.0VDC.

6. IC Ground

7. Controls FET operation

8. IC VCC
The following will explain steps that will allow the Powering Up of the Power Supply in a Stand Alone condition using (2) AA Batteries. This means that no other PWBs should be connected to the unit during the test.

Stand Alone power on of the units allows a technician to test the Power Supply without the effects of other PWBs, possibly isolating the trouble.

These steps must be carefully followed to prevent damage to PWB or injury to self.
FUNCTION CHECK

PROCEDURE INSPECT UNIT UNIT

UNINSERTED CONNECTOR

PARTIALLY INSERTED CONNECTOR

DAMAGED CHASSIS
• **Before** and **After** performing any troubleshooting it is necessary to visually inspect the TV to ensure all connectors are properly inserted and there are no additional damaged or broken parts.

• These items may act as clues to help determine the cause of TV symptoms.
FUNCTION CHECK PROCEDURE

REQUIREMENTS FOR POWER ON

1. AC line Voltage
2. Standby Voltage Circuit function
3. Power On Signal from Micon
4. In some models, Main AC line voltage switch must be closed
Provided all circuits function within a Power Supply, there are only (3 or 4) requirements for the Power Supply to function.

1. AC Line input voltage: This voltage will be rectified and provide the DC for the Switching Circuits.

2. Standby Voltage: This voltage is needed to power the Micon.

3. Power On signal from Micon: The micon receives the Power on signal from the Remote or Front Panel. It will then send the “Power On” Signal to the Power Supply circuits. This always turns on a relay that activates the Main Power Circuits.

4. Main AC line voltage switch must be closed: In some units, primarily HDILA models, there is a switch that controls the AC line voltage. In HDILA models, this switch is the Temperature Sensor that is mounted above the lamp. In other models this may be a Main Power switch on the back of the unit. This switch must be closed before the Television may be powered on.
TELEVISION

FUNCTION CHECK PROCEDURE

PROCEDURE

HD-52G786
SRP-9022A-M2 PWB
Reference YA293 Schematic

AV-48P776/H
SSR-9001A-M2 PWB
Reference YA318 Schematic

STEPS OF PROCEDURE
• Remove PWB from TV
• Inspect PWB
• Ensure Main Power Switch is Closed
• Plug unit into AC line
• Test Standby Circuits
• Simulate Micon “Power On” signal
• Check Switching Circuits.
Pictured are the (2) example PWBs that will be used in this procedure.

This is a quick and simple procedure that can be used to quickly test the circuits operation.

Ensure you have properly inspected the PWB for Shorted, Open, Damaged or Missing components.

The Steps of the Procedure are as follow:

1. Remove PWB from Television
2. Inspect PWB for Shorted, Open, Damaged or Missing components.
3. Ensure Main Power Switch is Closed (Shorted) to allow AC in circuit
4. Plug unit into AC line to provide voltage to Standby VCC circuits.
5. Test Standby Circuits and Check “Standby” Operation of Switching Circuits.
6. Simulate or Activate Micro “Power On” signal to activate Main Power Circuits.
7. Check “Power On” function of Switching Circuits.
FUNCTION CHECK PROCEDURE

INSPECT PWB

BROKEN

COMPONENT NOT FULLY INSERTED

SHORTED

MISSING
• Before performing any troubleshooting steps it is necessary to visually inspect PWBs.

• Failure to inspect PWB for these items could result in further damaging the PWB.

• Catching these items prior to troubleshooting can prevent wasted troubleshooting efforts.
FUNCTION CHECK

PROCEDURE PROVIDE AC AND CHECK STANDBY VCC

HD-52G786
SRP-9022A-M2 PWB
Reference YA293 Schematic

1. Short CN90SE
2. Plug in AC cord
3. Check for Standby VCC at IC9141

AV-48P776/H
SSR-9001A-M2 PWB
Reference YA318 Schematic

1. Plug in AC cord
2. Check for Standby VCC at IC922
When the AC cord is plugged in, the Standby Circuits should function. This Circuit will supply the VCC to the Micon. Check this Voltage prior to continuing.

SRP-9022A-M2 PWB

The SRP-9022A-M2 PWB utilizes Power Supplies whose Standby VCC is created by a circuit that is separate from the Switching Circuits.

- Check for the Standby VCC at the specified location.
- If the Standby VCC is not functional, begin at the incoming AC Line Voltage and check all voltages supplying the Standby VCC circuit.

SSR-9001A-M2 PWB

- The Standby VCC for the SSR-9001A-M2 PWB is created by the Switching Circuits.
- If the Standby VCC circuit is not functional, troubleshoot the Power line from the Transformer supplying this voltage. In this case it is the 28V line.

- **Remember:** In Standby Mode the Power Supply voltage is reduced. The 28V line will put out 14V in Standby Mode
- CP942 and CP941 may be removed to eliminate the possibility of others circuits creating shorts to this supply. Check the DC at C938
FUNCTION CHECK PROCEDURE
CHECK STANDBY CIRCUITS

AV-48P776/H
SSR-9001A-M2 PWB
Reference YA318 Schematic

CHECK CIRCUITS

1. F905 Surge Protection
2. D901 and C907 Main rectifier
3. IC911 Switching Regulator
4. D911, R911 and C914 Startup
5. T921 Switching Transformer
6. R923, C903 and R920 Current Feedback
7. FR915 and D912 Run DC
8. PC921 Photo Coupler
• The **SSR-9001A-M2 PWBs** Switching Circuits Operate in Standby Mode, therefore it is possible to partially test these circuits function.

• An Operational Standby Voltage Source is a good sign that the other circuits are functional.

• It is still necessary to fully power up the Supply to ensure it is fully functional as some components may fail under a higher load voltage.

• The **SRP-9022A-M2 PWB** does not utilize a Switching Circuit during Standby Mode. Therefore these circuits cannot be tested in this PWB.
FUNCTION CHECK PROCEDURE

PROVIDE “POWER ON”

AV-48P776/H
SSR-9001A-M2 PWB
Reference YA318 Schematic

1. Apply 3VDC to CN9003 pin12 “B1_POW” and CN001 pin12 “RELAY”, use CN003 pin15 as Ground
2. Check all Supply Voltages
3. Check Switching Circuits Function

HD-52G786
SRP-9022A-M2 PWB
Reference YA293 Schematic

1. Apply 3VDC to CN90G pin3 “MAIN_POW”, use pin2 “GND2” as Ground
2. Check all Supply Voltages
3. Check Switching Circuits Function
• Using (2) AA batteries connected in SERIES, connect the Positive end to the connector specified each PWB.
• Connect the GROUND end to the ground location specified.
• The AA batteries will provide a 3VDC to the Main Power Relay and other circuits necessary to turn on the Power Supply.
• Test all output voltages of the Supply.
• If the supply does not activate, ensure the 3V source is connected properly, then troubleshoot the Switching Circuits.
• Any external Power Supply may be used to provide the 3VDC turn on voltage.
FUNCTION CHECK PROCEDURE
ORDER OF FUNCTION CHECK

1. Surge Protection
2. Main rectifier
3. Switching Transformer
4. Switching IC
5. Startup
6. Photo Coupler
7. Run DC
8. Error Amp
9. Secondary Voltages
10. Current Feedback
11. Main Relay
12. Main Relay Drive
• By applying 3VDC to turn on the supply, you are now able to troubleshoot the supply in a Stand Alone Fully Powered Condition. This eliminates shorts caused by other PWBs.

• Check the circuits listed in the order specified to find PWB trouble.

• If a Circuit is found to be unsatisfactorily functional, use the troubleshooting procedures in the sections that will follow to aid in testing the specific circuit.

• The SSR-9001A-M2 PWBs Switching Circuits Operate in Standby Mode, therefore it is possible test many of these circuits by only applying AC line voltage. Although, Standby Mode will not provide full Output Voltage from the Transformer Secondary.

• B1 Power On at the correct Voltage is a good sign that the PWB has no defects.

• Refer to SWITCH CIRCUIT REVIEW section for assistance identifying the circuits and their functions.
FUNCTION CHECK PROCEDURE
BATTERY TESTING DEVICE
• (2) AA batteries may be used to supply a Power ON DC to the Power Supply
• Use the images to create a simple test Jig.
• Ensure that you properly connect the batteries in series with the positive of one battery connect to the negative of the other
• When connecting wires to the batteries it is wise to use (2) different colors to represent positive and negative to prevent later confusion.
• Always measure the voltage to ensure you have a proper connection between the batteries and they are outputting the correct voltage.
TROUBLESHOOTING

The following goes over procedures that will allow the testing of specific circuits of the Power Supply.

These steps must be carefully followed to prevent damage to PWB or injury to self.
TELEVISION

TROUBLESHOOTING

SWITCHING IC

- Check VCC
- Check Ramp Voltage at Feedback Pin
- Check for DC voltage at FET input
- Check that FET is not shorted to GND
- Always Replace IC and Capacitor together.

STR-G9626

STR-X6737

STR-F6167
• The (3) versions of the Switching IC are shown; G, F and X. These pin out schematics of the ICs can be used to assist with troubleshooting.

• Check the ICs VCC for approximately 14V. This is the StartUp and RunDC voltage that is required to power the amp.

• Check for the Ramping Voltage at the Feedback Pin. This voltage will vary between models, but .7VDC is the average measurement. Some PWBs have shown 1.4VDC at this pin.

• Check for DC voltage at FET input. It should be the same as the Input to the Transformer and is usually about 170VDC.

• Check that the FET is not shorted to GND. Ensure the Power Supply is Off before making this measurement.

Always Replace the IC and the Capacitor on the VCC input together.
TROUBLESHOOTING
CHECKING SWITCHING IC SUPPLY “STARTUP”

• Power On and check IC supply
• Usually a Diode/Resistor and Capacitor connected directly to the AC and bypassing the Main Bridge Rectifier
• Desoldered components to isolate StartUp supply if needed
• Always Replace Capacitor and IC together.

Reference YA318 Schematic
• Use the FUNCTION CHECK PROCEDURE to power on the Television.

• Check the Switching ICs pin4 VCC for approximately 14VDC. This is supplied by the StartUp circuit previously outlined.

• If this voltage is not present, check the circuits that supply this voltage to the IC.

• Check the Diode, Resistor and Capacitor that make up this circuit for opens or shorts.

• This circuit is connected to the Photo Coupler circuit so it may be necessary to check or desolder these components to eliminate the possibility of them being the trouble.

• Desoldering and Lifting the ICs pin 4 will allow the check of this voltage without the influence of the Switching IC.

Always Replace the IC and the Capacitor on the VCC input together.
Rectifier Circuits always used to Provide DC Out from AC In
Check Incoming AC
Check DC Voltage at Capacitor
Desolder components after capacitor to isolate Bridge from shorting
• The Bridge Rectifies converts the AC line input into a DC voltage that is usable by the TV circuits.

• Begin troubleshooting this Device by first checking the incoming AC line voltage, then checking the DC voltage at the Capacitor.

• It may be necessary to desolder components to eliminate them as a possible cause of problems. If so, desolder the components after the Capacitor.
TELEVISION

TROUBLESHOOTING
RELAY FUNCTION CHECK

Use this circuit to test the Relay
Follow Steps to assist

[Diagram of relay function check with labels: current limiting resistor, EXT DC]
Connect power supply as shown in figure. Use a 1K ohm 10 watt resistor as a current limiter.

Set voltage to 3V and check current reading.

- Less than .3 amps: Yes → Troubleshoot Components
- No → Set voltage to 13V and listen for relay operation. Check for continuity (short) at relay contacts

- Relay Short: Yes → Troubleshoot Components
- No → Adjust voltage to 0V and check that relay deactivates. Check for open at relay contacts

- Relay Open: Yes → Troubleshoot Components
- No → Troubleshoot Components

- Procedure Complete

• It is possible that the Relay contacts may wear or the supply circuits to the relay may not function.
• Use this circuit to test the relays function.
• Follow the Steps to assist in troubleshooting.
Use this circuit to test the Regulators
Follow Steps to assist
The Circuit may be used to test the Voltage Regulators used in the Power Supply.

1. Positive On input, Negative to GND
2. Begin by inputting 2-4V
3. Check current, if it is excessive then there is possibly a short.
4. Raise voltage approx 4 volts above regulator voltage and check that the DC does not exceed the ICs rating
5. Always monitor current and stop if current becomes excessive.
Connect the DC supply so that it will replace the voltage that normally would supply the voltage Photo Coupler.

Reference YA293 Schematic
• Check the Operation of Feedback Photo Coupler by connecting the circuit shown.

• When the Photo Coupler becomes operational you will see the voltage at the emitter of the Photo Coupler Transistor rise from 0 to approximately 5V.

• When checking this circuit using the FUNCTION CHECK PROCEDURE you will notice a 1V difference between the Photo Coupler Transistors pins.
TELEVISION

TROUBLESHOOTING

SYMPTOM/CAUSE

B1 VOLTAGE HIGH/LOW SECONDARY VOLTAGES

• Leaky Error Amps may cause High B1 voltages
• Check voltages at error amp.
• If it is excessive then change.
• The Zener Diode on between the Photo Coupler and Error Amp may cause similar Low Power issues

POWER ON/OFF RAPIDLY

• This can result from many things, but the likely culprit is the supply to the switching IC.
• This is similar to what causes lamp flicker, the power supply is oscillating due to insufficient supply voltage.
• Check the circuit that supply the Run DC and Startup DC.
• Measure the Ramping Voltage at the Feedback. If it is less than .7V, this means the IC is not stable.

NO STANDBY VCC

• In many HDILA models the Transformer, Regulator or Rectifier circuit fails.
• Check the input to the Bridge Rectifier then measure the DC output voltage at all points up to the Regulator to find the faulty component.
• In Models with Standby supplied by Switching Circuits, measure the supply voltage to this circuit. Many times other PWBs have failed in the TV shorting the supply line for the Standby Voltage.
• Ensure the Circuit Protectors have not blown on this supply line.

LAMP FLICKER IN HDILA

• Run DC is important to maintaining a stable supply, if this is low the supply may oscillate.
• This oscillation will appear in the voltage and in HDILAs this may cause the lamp to flicker.
• Check the circuit that supply the Run DC and Startup DC.
• Measure the Ramping Voltage at the Feedback. If it is less than .7V, this means the IC is not stable.